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ABSTRACT 

One of the limitations of commercially available 

metal additive manufacturing (AM) processes is the 

minimum feature size most processes can achieve. A 

proposed solution to bridge this gap is microscale 

selective laser sintering (μ-SLS). The advent of this 

process creates a need for models which are able to 

predict the structural properties of sintered parts. 

While there are currently a number of good SLS 

models, the majority of these models predict sintering 

as a melting process which is accurate for 

microparticles. However, when particles tend to the 

nanoscale, sintering becomes a diffusion process 

dominated by grain boundary and surface diffusion 

between particles. As such, this paper presents an 

approach to model sintering by tracking the diffusion 

between nanoparticles on a bed scale. Phase Field 

Modeling (PFM) is used in this study to track the 

evolution of particles undergoing sintering. Changes 

in relative density are then calculated from the results 

of the PFM simulations. These results are compared to 

experimental data obtained from furnace heating done 

on dried copper nanoparticle inks, and the simulation 

constants are calibrated to match physical properties. 

INTRODUCTION 

The resolution of currently available metal additive 

manufacturing (AM) technologies is generally on the 

order of hundreds of micrometers [1,2]. This 

resolution prevents AM technologies from expanding 

into industries, such as the microelectronics industry, 

where sub-10 μm part sizes are critical. Parts 

fabricated for the microelectronics industry are 

typically made using a combination of lithography, 

etching and material deposition processes to create 

2.5D electronic structures. However, there are size 

limitations and associated complexities with using 

these processes. The need for a more flexible 

manufacturing process which matches the desired 

tolerances needed for creating 3D microelectronic 

structures is being filled through the creation of a 

microscale selective laser sintering process (μ-SLS) 

[3-5].  

Selective Laser Sintering (SLS) is an AM process 

by which parts are created through the fusion of 

particles using energy absorbed from a laser source. In 

the traditional SLS process, powder is spread onto a 

bed and a laser beam is rastered over the powder bed, 

providing the particles heated by the laser with enough 

heat energy to fuse together and form a solid part [6]. 

This process is different from other AM processes, in 

that it is powder based and uses a laser as the heat 

source. The powder base allows for the creation of 

features like overhangs as sintered parts are supported 

by unsintered powder underneath it. Micro-SLS 

differs from the traditional SLS process in that it deals 

with the sintering of nanoparticles, which would allow 

for smaller features and microscale resolution. With 

the creation of this new technology, there is an 

associated need for models able to predict the final 

properties of sintered parts. 

There are currently a number of good SLS models 

[7-9], but these models deal with microparticles and as 

such model sintering as a melting process. During the 
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sintering of nanoparticles, the mechanism behind 

sintering becomes dominated by nanoscale effects. 

Some of these effects include, but are not limited to, 

vapor, volume, grain boundary and surface diffusion, 

viscous flow, and grain-boundary sliding/dislocations 

[10]. The particles used for this study are on the order 

of ten to a hundred nanometers. For this size of 

particles, the dominant means of sintering has been 

shown to be surface and grain-boundary diffusion 

[10]. Consequently, the simulations presented in this 

paper model sintering as a diffusion process 

dominated by surface and grain boundary diffusion, 

with minimal volume diffusion contributions.  

BACKGROUND 

Studying sintering as a diffusion process is not a 

novel idea. A number of simulations study sintering as 

a diffusion driven process. Ding and Pan studied the 

sintering between nanoparticles using molecular 

dynamics (MD) simulations which track the atomistic 

interactions between particles [11]. These MD 

simulations made use of the Lennard-Jones model to 

track the potential between particles. Because MD 

simulations track the interactions between atoms, 

these simulations are only able to model a few 

particles at a time. Ding and Pan also compared 

continuum and MD models for the sintering of 

nanoparticles. This comparison led to the realization 

that the preliminary assumptions required for 

continuum models made them inadequate for tracking 

the sintering kinetics which change during the MD 

simulations. Cheng and Ngan were able to expand 

from the few particle MD simulations to tracking four 

particles, broken into half, quarter and octet portions 

and arranged in an FCC crystalline state [12]. Though 

these MD models are able to track all phases of the 

sintering process, they have the disadvantage of being 

too computationally expensive to track more than a 

few particles at a time. Alternative to these MD 

models, there are discrete models which are able to 

track particles on a bed scale. Rojek et al modelled 

sintering as a diffusion process using a Discrete 

Element Method (DEM) [13]. They found shrinkage 

between particles to be driven by inter-particle 

attraction which is caused by the stresses and surface 

tension in the necks formed between particles. Though 

this model was able to monitor a large number of 

particles, sintering is modeled as a bulk process which 

is governed by a particle interaction model dependent 

on only grain boundary diffusion. The downside with 

discrete models is that they are unable to model 

nanoscale effects during sintering. Thus the gap exists 

between the MD models which characterize full 

nanoscale effects but can only model a few particles at 

a time and the discrete models which model full beds 

but are unable to model nanoscale effects. Phase Field 

Modelling (PFM) can bridge this gap. 

A number of Phase Field models have been created 

to track the sintering behavior between particles. 

Wang used PFM to track the sintering between 26 

particles [14] and Shinagawa used a combination of 

PFM and DEM to track the sintering between a cluster 

made up of 10 particles [15]. With both of these 

models, the sintering behavior is successfully 

characterized for the particles in 2D. While 2D 

simulations provide useful insight into the process of 

diffusion between particles, they cannot accurately be 

used to predict properties of real particle beds such as 

volumetric shrinkage. Kumar used PFM to track the 

sintering of 28 3D particles randomly arranged in a 

cubic lattice [16]. 

In contrast to the previously mentioned models, the 

simulation used in this study is able to track the 

sintering between hundreds of particles. This study 

simulates sintering in a 43 particle one-by-one micron 

bed and a 134 particle two-by-two micron bed. 

Additionally, a data analysis package is created to 

determine the change in density of the bed. The 

relative density of the beds are plotted as functions of 

simulation time and compared against similar results 

from experimental data. This comparison is used to 

calibrate the simulation constants, mapping simulation 

results to physical experiments. 

MODEL 

A Phase Field Model (PFM) was used in this study 

to track the sintering of particles. PFM is a diffuse-

interface approach which tracks the evolution of 

particles using phase field variables which are related 

to microscopic parameters [17]. In this study, the PFM 

variables used are the conserved mass density (ρ) 

variable and the non-conserved order parameter (ηi). 

These variables take on values from 0 to 1 tracking the 

phases of, and interphases between, particles. The 

density variable differentiates between solid phase, 

where it takes the value of 1, and the vapor phase, 

where it takes the value of 0. On the other hand, the 

order parameter takes on the value of 1 for the ith 

particle and is 0 for every other particle. The evolution 

of particles in this system is driven by the 
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minimization of the total free energy, which is a 

function of the phase field variables and is given in Eq. 

1. 

𝐹 =  ∫ [𝑓(𝜌, 𝜂𝑖) +  
1

2
𝛽𝜌|∇𝜌|2

𝑉

+
1

2
∑ 𝛽𝜂|∇𝜂𝑖|

2

𝑁

𝑖=1

]  𝑑𝑉                  (1) 

𝑓(𝜌, 𝜂𝑖) is the bulk free energy, N is the total number 

of particles in the system, βρ is the gradient energy 

term for the density variable, and βη is the gradient 

energy term for the order parameter. The bulk free 

energy is a Landau type potential shown in Eq. 2. [16]. 

𝑓(𝜌, 𝜂𝑖)

=  𝐾1 (𝜌4 +
−4𝜌𝑣𝑎𝑝 − 4𝜌𝑠𝑜𝑙 − 2

3
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2
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𝑁

𝑖=1
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4

𝑁

𝑖=1

+ 𝑤 ∑ ∑ 𝜂𝑖
2𝜂𝑗

2

𝑁

𝑗=1,𝑗≠𝑖

𝑁

𝑖=1

)                         (2) 

where ρvap and ρsol are the vapor and solid density 

parameters respectively, w is related to the grain 

boundary energy, K1 and K2 are constants related to 

grain boundary and surface energy as shown in Eqs 3 

and 4. In addition to K1 and K2, the gradient energy 

terms for the density variable and the order parameter, 

from Eq. 1, are related to the surface energy and grain 

boundary energy in the system. Chockalingam et al 

[18], showed that the surface and grain boundary 

energy are functions of the constants in Eq. 1 and Eq. 

2. The relationship between these constants and the 

energy terms are shown in Eqs. 3 and 4. 

𝛾
𝑔𝑏

=  

2√𝐾2𝛽
𝜂

√3
                                                             (3) 

𝛾
𝑠

=  

√2 (𝛽
𝜌

+ 𝛽
𝜂
) (𝐾1 + 7𝐾2)

6
                             (4) 

γgb in Eq. 3 is the grain boundary energy and γs in Eq. 

4 is the surface energy. As stated earlier, the sintering 

kinetics is driven by the progression of the phase field 

variables. The temporal evolution of the density 

variable is governed by the Cahn-Hilliard equation 

[19,20] which is shown in Eq. 5. 

𝜕𝜌

𝜕𝑡
=  ∇. (𝐷∇

𝛿𝐹

𝛿𝜌
)  

=  ∇. (𝐷∇ [
𝜕𝑓(𝜌, 𝜂

𝑖
)

𝜕𝜌

− 𝛽
𝜌

∇2𝜌 ])                                     (5) 

D is the equivalent diffusion coefficient, made up of 

fractions of the surface, grain boundary and volume 

diffusion coefficients, and is given by Eq. 6. 

𝐷 =  𝐷𝑣𝑜𝑙∅ + 𝐷𝑠𝑢𝑟𝑓𝜌2(1 − 𝜌2)

+ 𝐷𝑔𝑏𝜌 (1 − ∑ 𝜂𝑖
2

𝑁

𝑖=1

)                 (6) 

Dvol is the volume diffusion coefficient, Dsurf is the 

surface diffusion coefficient, Dgb is the grain boundary 

diffusion coefficient, and ∅ =  𝜌4(7𝜌2 − 18𝜌 + 12) 

having a maximum in the solid phase and a minimum 

in the vapor phase [16]. The temporal evolution of the 

order parameter is governed by the time-dependent 

Ginzburg-Landau structural relaxation equation [21], 

given in Eq. 7 where L is a constant that characterizes 

grain boundary mobility. 

𝜕𝜂
𝑖

𝜕𝑡
=  −𝐿

𝜕𝐹

𝜕𝜂
𝑖

=  −𝐿 (
𝜕𝑓

𝜕𝜂
𝑖

− 𝛽
𝜂
∇2𝜂

𝑖
)                     (7) 

SIMULATION 

Setup 

The equations for the field variables listed above 

were discretized using the Forward Euler method for 

numerical differentiation. These equations were 

encoded into a simulation using programming with 

C++, working in units of pixel length and simulation 

timesteps. Message Passing Interface (MPI) was then 

used in C++ to break the simulation box into different 

smaller boxes that could be analyzed by different 

processors. This parallel program was then run in a 

cluster using varying number of cores, depending on 

the size of the simulation box. The numerical data 

output from the C++ simulation is put into a python 

algorithm which plots the geometry of the bed, by 

converting the numerical data to the matching x-y-z 
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locations of pixels, with weights relating to the density 

and order parameter field variables. The constants used 

in the simulation correlate to sintering at different 

temperatures. For the initial test of the simulation, the 

constants used are βρ = 10, βη = 3.75 in Eq. 1, K1 = 

12, K2 = 1, w = 7 in Eq. 2, in Eq. 4 Dsurf = 45, Dgb  = 

4.1, Dvol = 0.08 and L = 10 in Eq. 5 [15]. These 

constants were arbitrarily chosen to correspond to a 

10:1 ratio of surface to grain boundary diffusion and a 

2:1 ratio of surface to grain boundary energy, derived 

from Equations 3 and 4. The value for the density in 

vapor phase (ρvap) was taken to be 0.000000089 and in 

solid phase (ρsol) 0.9998. These values were chosen 

instead of the standard values of 0 and 1, to allow for 

numerical analysis of the discretized differential 

equations. The simulation was initialized by setting 

pixels outside of a particle to ρvap and in the particle to 

ρsol. The simulation takes in beds generated with a bed 

generation simulation and starts with the particles in 

contact. 

Bed Generation 

The bed generation tool used generates particles 

arranged to match an actual physical bed. These beds 

consist of spherical nanoparticles, generated by setting 

an initial position vector for each particle as well as a 

radius, to set particle size. The generation simulation 

uses Discrete Element Modelling (DEM), in a 

Multiphase Computational Fluid Dynamics 

simulation, MFIX. Particle packings are generated 

using the MFIX-DEM discrete mass inlet function, 

which allows each particle to interact with neighboring 

particles. Initially, the particles are distributed 

randomly within the bed domain, they are given an 

initial velocity and are allowed to move within an 

initial set of boundary conditions. Particle interactions 

are modeled using a dashpot model based on a soft-

sphere model of the particles. Subject to gravitational 

and cohesive forces, the particles move around and 

interact until the final steady state position is reached. 

This final geometry is used as the input into the PFM 

simulation. Complete details of the bed generation 

process can be found in reference [22]. 

 

RESULTS AND DISCUSSION 

A number of procedures were done to test the 

capability and validity of the simulation described 

above. These procedures include running the 

simulation on a one-by-one and two-by-two 

micrometer bed to prove first, that the simulation 

works and produces results which are similar to 

experiments, and secondly that the simulation can be 

expanded for over a hundred particles. The results of 

these tests are discussed in more detail below.  

One-by-One Micrometer Bed 

A one-by-one micrometer bed was generated with 

the bed generation tool described earlier and is shown 

in Fig 1. This bed is made up of 43 particles in a 

simulation box with dimensions of 110 by 110 pixels 

in the x-y plane and 73 pixels in the z. This 

corresponds to a bed height of 750 nm and particles 

with diameters ranging from 146 to 573 nm with a 

mean of 218 nm, using a conversion factor of 

approximately 10.6 nm/pixel. The size range of this 

bed is designed to match the size distribution of the 

copper nanoparticles in the ink used for the 

experiments. The size distribution of this ink was 

derived from experiments to match a lognormal 

distribution with a mean of 232 nm and a standard 

deviation of 96 nm. Using a 64 core cluster, this 

simulation took approximately 19 hours to run to 2.4 

million time steps. The results of the sintering 

simulation are shown in Fig. 1. 

At the start of the sintering process particles are in 

contact to initiate diffusion. The average overlap 

between the particles at the start of the simulation is 

0.0004 nm. At the initiation of sintering, necks begin 

to form between particles. These necks grow until the 

onset of coarsening where the boundary between 

particles migrates into the smaller particles shifting the 

balance of mass towards the larger particle. As shown 

in Fig. 1 the initial sintering periods are characterized 

by fast neck growth evident in images 1a – d. The neck 

formation happens rapidly leading to a faster looking 

rate of evolution than in the later time steps. The 

shrinkage and densification become clearer in the later 

images 1f – i as the pores prevalent in the previous 

time steps are filled due to diffusion as sintering 

occurs. The bed shown in Fig. 1 was simulated under 

isothermal conditions, with each particle having the 

same values for the diffusion and energy constants. 

The values in the description of Fig. 1 are the 

simulation timesteps and in parenthesis the amount of 

wall clock time it takes to get to the corresponding 

timestep. 
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Fig. 1. The evolution of a one by one micrometer bed with 43 

particles. a. Initial. b. 20000 timesteps (.16 hrs.) c. 60000 timesteps 
(.47 hrs.) d. 100000 timesteps (.79 hrs.); e. 280000 timesteps (2.2 

hrs.) f. 450000 timesteps (3.6 hrs.) g. 700000 timesteps (5.5 hrs.) h. 

850000 timesteps (6.7 hrs.) i. 1100000 timesteps (8.7 hrs.) 

Data Analysis 

Upon completion of the sintering simulation, the 

data collected from these simulations was analyzed to 

determine the change in relative density of the 

simulation over time. The density of the bed was found 

from analysis done on a 40-by-40 pixel box, which 

corresponds to a 423-by-423 nm box, in the center of 

the simulation bed. The PFM simulations assume that 

sintering occurs with particles that are surrounded by 

air, which allows for shrinkage across the x-y bounds 

of the simulation. As such, the analysis is done in the 

center of the simulation to ensure that the results 

collated are impervious to edge effects. In this analysis 

box, the calculations for density were found by taking 

the ratio of the total sum of the conserved density 

variable in the box, to the total volume of that box. 

With this method, the relative density has a value of 0 

in a fully porous box and a value of 1 when fully dense. 

A cross-sectional view of the simulation box showing 

the inner box undergoing sintering is shown in Fig. 2. 

 

 

Fig. 2. Densification in the center of the simulation bed after a. 0 

timesteps. b. 80000 timesteps. c. 160000 timesteps. d. 480000 
timesteps 

To get an uncertainty measure for the analysis done 

on these beds, several boxes were taken from each bed. 

These boxes were chosen based off an edge finding 

algorithm which gives the largest possible bounds for 

analysis without encroaching upon the edges of the 

simulation. The significance of this tool is the ability 

to determine the cutoff point between the fully 

populated bulk of the bed and the edges of the 

simulation which undergo x-y shrinkage. The edge 

finding algorithm works by taking strips of the full z 

height, along each slice in the x and y direction. In 

each z-strip the deviation from the top and bottom of 

the bed is calculated, and the total deviation is defined 

as the Euclidean norm of these values. The total 

deviation is then normalized against the largest 

difference in deviations for each bed. This gives the τ 

value found for the algorithm and is shown in Eq. 8 

below. 

𝜏𝑖

=
√(𝑡𝐷,𝑖

2 + 𝑏𝐷,𝑖
2)

𝑚𝑎𝑥 [√(𝑡𝐷
2 + 𝑏𝐷

2)] − 𝑚𝑖𝑛 [√(𝑡𝐷
2 + 𝑏𝐷

2)]

    (8) 

where tD and bD refer to the deviation of the z strip 

from the top and bottom of the bed respectively. Once 

τ is calculated, the algorithm compares this value to a 

predetermined cut off factor and defines the analysis 

bounds as the x and y values that give τ values just 

below the cut off. The optimum cut off factor for the 

simulation was determined analytically by varying 
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different factor values to get the best agreement for all 

beds tested. Fig. 3 shows the average rate of relative 

density for a single one-by-one bed simulation run, as 

well as the associated error bounds calculated from 

varying the position of the analysis box. The relative 

density is defined in Eq. 9. 

𝜌
𝑟𝑒𝑙

=  
𝜌𝑖 − 𝜌𝑜

𝜌
𝑖

                                                             (9) 

Where ρo is the sum of the density variable at the start 

of the simulation, and ρi is the sum at the simulation 

timestep i.  

 
Fig. 3. Relative density curve, with error bounds, derived from data 

analysis done on the sintering simulation 

Experimental Procedure 

Once data analysis was done on the simulation 

beds, experiments were performed to validate the 

simulation results and calibrate the simulation 

constants to match physical properties. Specifically, 

the simulation time step was calibrated to match the 

sintering experiment time in minutes, and the 

simulation energy and diffusion constants were 

calibrated to match sintering temperatures. The 

experiments were carried out in a furnace using 

Intrinsiq CI-005 copper nanoparticle inks [23]. 2ml of 

copper nanoparticle ink was dispensed into a glass 

petri dish using a rubber pipette. The petri dish of ink 

was dried on a hot plate at around 95˚C for 16 hours. 

After the solvent in the ink was dried off, dried copper 

flakes of coated nanoparticles were scraped off the 

petri dish with a flat spatula. These dried flakes were 

then put into crucibles. Pressure was applied to form 

the flakes into pellets in the crucibles. These crucibles 

were put into a furnace and subject to isothermal 

heating. In the furnace, the coating around the particles 

dried off and the nanoparticles sintered together into a 

solid pellet. The flow of the experimental procedure is 

shown in the images in Fig. 4. The sintering 

experiments were carried out under flowing Argon and 

Hydrogen to control oxidation of the copper 

nanoparticles.   

 

 
Fig. 4. Experimental procedure. a. Copper nanoparticle ink. b. 

Dried ink. c. Scraped off dried flakes. d. Pellets in crucible before 

sintering. e. Pellets in crucible after sintering 

 

SEM images were taken of the flakes before 

sintering, and the pellets after sintering. These images 

in Fig. 5, show that before sintering the particles are 

discrete and can be seen separate from each other. 

After sintering, the images of the pellets show that 

necks have formed between the nanoparticles after 

heating. 

 

 

Fig. 5. SEM Images of sintered nanoparticles. a. Before sintering. 
b. After sintering 
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Analysis of the sintered copper pellets were carried 

out after the experiments. The density measurement is 

calculated as the ratio of mass to volume. The mass 

was measured using a digital weight scale and the 

height of the copper nanoparticle pellet in the crucible 

was measured using a plastic stopper. First, the height 

of the pellet was calculated as the difference between 

the height of the stopper when placed in the empty 

crucible, and the height when placed in the crucible 

containing the pellet. The volume was then calculated 

using this measured height and the diameter of the 

crucible. Similarly, the mass of the pellet was 

calculated as the difference between the mass of the 

empty crucible and the mass of the crucible containing 

the pellet. The initial density of the pellet was 

calculated from the ratio of mass to volume. The 

relative density was then calculated based off the 

measurements taken. This value was calculated using 

the same equation as was used for the simulation (Eq. 

9), where in this case ρo corresponds to the initial 

density of the unsintered pellet and ρi is the density 

after sintering. 

  The sintering experiments were carried out at 

450, 500, 550 and 600˚C. The relative density data at 

these temperatures were fit to an exponential decay of 

the form in Eq. 10. 

 

𝜌𝑟𝑒𝑙 =  𝐾1𝑒
− 

𝐾2
  𝑡+𝐾3

+𝐾4 + 𝐾5                                       (10) 

Where the K values are best fit constants. The plot of 

the experiment data points and the best fit curve for the 

decay in Eq. 10. is shown in Fig. 6. A consolidation of 

all these plots is shown in Fig. 7. From Fig. 6, it can 

be seen that sintering is characterized by an initial rate 

of rapid densification and as the sintering time 

proceeds the rate of densification approaches a steady 

state value. Fig. 7 shows that as the temperature 

increases, the amount of time it takes for the relative 

density to reach steady state decreases. These curves 

from the experiments were set against the results from 

the simulation and the appropriate simulation 

constants and simulation time calibration constant 

were calculated. The process of deriving this is 

discussed in the following sections. 

 

Fig. 6. Experimental data and curve fit at a. 450˚C. b. 500˚C. c. 550˚C. d. 600˚C
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Fig. 7. Consolidation of experiment fit plots 

 

Experiment and Simulation Sizes 

 The goal of carrying out the experiments is to 

validate and calibrate the simulations. For this 

calibration, millimeter scale crucibles are used in 

comparison to micrometer scale simulation beds. This 

mismatch in size is a result of the infeasibility of 

applying the same size scales to both the simulation 

and the experiments. That is, facilities do not exist to 

conduct experiments on the micron scale and running 

the simulation on the millimeter scale would require 

more computational power and time than possible. As 

such, initial density measurements are taken to make 

sure that the simulation bed and the experiment bed at 

the start of sintering are comparable. The procedure 

for obtaining these density measurements in the 

experiments are discussed in the experimental 

procedure section above. The initial density in the 

simulation bed is determined from the porosity of the 

simulation bed. The number of pixels in the vapor 

phase are counted and the pore density is obtained 

from taking the ratio of porous pixels to the overall 

number of pixels in the simulation bed. Finally, the 

initial density for the simulation is calculated by 

multiplying the percentage of filled pixels (1 – 

porosity) in the bed with the known density of bulk 

copper 0.00896 g/mm3. Distributions for the average 

initial densities from the experiments and simulations 

are shown in Fig. 8 with lines to indicate the 95% 

confidence intervals for each distribution. The 

measurements from the experiments are obtained from 

an average of 6 measurements taken for each bed. This 

makes the average density from the experiments 

follow a normal distribution with an average of 3 

mg/mm3 and a standard deviation of 0.06 mg/mm3. 

The initial density for the simulations follows an 

unknown distribution. Based off the Central Limit 

Theorem the approximation can be made that the 

average of the initial densities from the simulation 

would follow a normal distribution with a mean of 3.2 

mg/mm3 and a standard deviation of 0.1 mg/mm3 

(which is the sample standard deviation divided by the 

square root of the number of points sampled).  

A two-tailed p-test was done to test the null 

hypothesis that both distributions are equal. The p 

value calculated from this test is 0.074. This value is 

greater than 0.05, so the null hypothesis cannot be 

rejected at a 90% confidence level. One reason why 

the initial densities of the simulations and experiments 

may differ is due to the precision of measurement. The 

height measurements of the experiments are done with 

plastic stoppers which introduce additional errors due 

to the irregularities in the surface of the stopper. On 

the other hand, there is no such irregularity in 

measuring the density of the simulation where the 

exact pixel height is known. Another reason why the 

initial densities may differ is due to the polymer 

coating around the nanoparticles used for the 

experiments. This creates a mix of materials which is 

not present in the simulations. Within the uncertainty 

the initial densities can be said to agree and as such the 

simulations can be calibrated against the experiments.  
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Fig. 8. Distribution of the Average Initial Density of the Simulation and Experiment for 12 Simulation beds and 24 Experiment samples 

 

Simulation Calibration 

The constants used in the PFM simulation are 

temperature and time dependent and have simulation 

units. To map these constants to physical units a time 

calibration must be done, matching the simulation 

time in units of timesteps to experimental time in 

unites of minutes. The simulation was calibrated 

against experimental data by plotting the percentage 

change curve from the experiments against that 

derived from the simulations. The first step for this 

calibration was arbitrarily changing the values of the 

simulation constants related to diffusion and energy to 

get a good comparison between the density curves 

from the simulations and that of the experiments. After 

a good rough fit was derived from comparing the 

simulation data to the experimental data, the 

simulation time step was calibrated to match 

experimental sintering time. For the time calibration, 

the simulation time steps are taken to have a linear 

correlation with the actual time so that the calibration 

factor is a constant (A) given in Eq. 11. 

𝑡𝑒𝑥𝑝(𝑚𝑖𝑛) =  
𝑡𝑠𝑖𝑚(𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠)

𝐴
                               (11) 

The calibration factor was determined through a 

minimization algorithm. This algorithm works by 

narrowing the possible values of A to a window with 

upper and lower bounds off by a negligible value of 

epsilon. The values in this window minimize the total 

error between the simulation data and the experimental 

data. The value of A that gives the lowest error is taken 

as the calibration factor mapping simulation timesteps 

to experimental time. The results fitting the simulation 

to experiments are shown in Fig. 9. 
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Fig. 9. Comparing experimental fit to simulations for a. 450˚C. b. 500˚C. c. 550˚C 

 

The results for the time calibration values are 

shown in Table 1. The Table shows the results for the 

range and averages of the error and time calibration 

values. The range included in these values, like the 

error bars in Fig. 3, are a result of carrying out the 

calibration analysis on different boxes in the center of 

the simulation bed. The data in Table 1 shows an 

overall average error of about 9% between the 

simulation and experiments. The time calibration 

factor shown in the table has an average of 20% 

deviation between each temperature.  

Table 1. Calibration Results: Time and Error 

 

Time Calibration, A 

(timesteps/minute) Error (%) 

 Minimum Maximum Average Minimum Maximum Average 

450˚C 101070 388864 215319 3.22 30.14 13.54 

500˚C 57644 277293 167598 3.57 10.91 7.01 

550˚C 71110 383773 250102 3.99 9.79 6.76 
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Once calculated, the simulation diffusion constants 

were mapped using Eq. 12. 

 

𝐷𝑠𝑖𝑚 (
𝑝𝑖𝑥𝑒𝑙𝑠2

𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠
) =>

𝐷𝑠𝑖𝑚𝐴

60𝑆2
                                       

=>  𝐷𝑎𝑐𝑡𝑙 (
𝑐𝑚2

𝑠
)                      (12)  

 

Where Dsim represents the simulation diffusion 

coefficients and Dactl represents the diffusion 

coefficients when mapped to the corresponding units 

in a CGS system. A is the time calibration constant in 

Eq. 11 having units of timesteps/minute and S is the 

size calibration constant. S here is set as 944822 

pixels/cm. The values used for the diffusion constants 

in the simulation where mapped to physical units and 

are shown in Table 2. For this study surface, grain 

boundary and volume diffusion coefficients are 

assumed to follow the ratio 1000:100:1 [24,25] 

respectively. As these constants are the final constants 

derived from the best fit between the experiments and 

the simulation, they represent sintering simulation 

constants for copper at the temperatures stated in the 

table. 

 

 

Table 2. Calibration Results: Diffusion constants 

 Surface Diffusion coefficients (cm^2/s) 

 Average Uncertainty 

450˚C 2E-07 1E-07 

500˚C 2.2E-07 7.9E-08 

550˚C 3E-07 1E-07 

 

 

As of this point there has been no experimentally 

determined surface diffusion coefficients for copper 

nanoparticles to compare against the constants in 

Table 2. Bonzel and Gjostein [26] found that at 500˚C 

the surface diffusion coefficient of bulk copper is 

1.91E-07 cm2/s. This value falls within the same order 

of magnitude as the value obtained from the 

simulations, which is further validation of the model.  

Two-by-Two Micrometer Bed 

One of the goals for the model described in this 

paper is to be able to apply it to over a hundred 

particles. To this end the simulation was applied to a 

two-by-two micrometer bed. The configuration of this 

bed was determined using the same bed generation 

tool as described earlier, and the PFM simulation was 

run on this bed. The two-by-two micrometer bed 

corresponds to 134 particles with diameters ranging 

between 118 to 572 nm. The bed was created using the 

same particle size distribution as used for the one-by-

one micrometer bed. The two-by-two micrometer bed 

had a simulation box size of 286 by 282 pixels in the 

x-y plane and 98 pixels in the z. With a 140 core 

cluster the simulation took 48 hours to run to 220,000 

time steps, and 52 hours to run to 2,030,000 time steps 

in a 1440 core cluster. The results from the simulation 

are shown in Fig. 10. As was the case with the one-by-

one bed, these images show a similar rate of rapid 

initial neck formation and a slower rate of 

densification and shrinkages as sintering proceeds. 
 

 
Fig. 10. The evolution of a two by two micrometer bed with 134 

particles. a. Initial b. 200000 timesteps (5.1 hrs.) c. 600000 

timesteps (15 hrs.) d. 1000000 timesteps (26 hrs.) e. 1500000 

timesteps (38 hrs.) f. 2000000 timesteps (51 hrs.) 
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Analysis done on this bed and shown in Fig. 11 

quantitatively confirms that the densification is similar 

to that seen in the one-by-one micrometer bed.  

 The plots in Fig. 11 show two density curves. The 

density curve in the dashed line is a prediction from 

scaling the results of a one-by-one micrometer bed by 

a factor of the areal magnification between both beds. 

The average error between the prediction and the 

actual density curve derived from the analysis of the 

beds is 12% which is smaller than the uncertainty in 

these curves. This error value shows a good degree of 

accuracy in scaling up the results using analysis of the 

smaller bed. The significance of this test is to show the 

viability of extrapolating results from one-by-one 

micrometer beds for larger beds which are more 

computationally expensive to run. 

 

 
Fig. 11. Relative change in density curve derived from data 

analysis done on a 2-by-2 micrometer bed and the prediction from 
a 1-by1 micrometer bed. 

 

CONCLUSION 

In this paper a Phase Field Modelling (PFM) 

approach is used to simulate the sintering of particles 

in a one-by-one micrometer bed. The simulations 

presented here are unique in that they are applied to 

3D bed scale simulations using clusters which can be 

extended to hundreds of particles. The validity of 

expanding this simulation is tested against a larger 

two-by-two micrometer bed containing 134 particles. 

Additionally, a data analysis package was created that 

measures the relative density change in each bed. 

Experiments were also performed with a furnace. The 

experimental data shows that after 10 minutes of 

heating at 450˚C the density value starts to reach the 

maximum steady state value. As heating temperature 

increases, the amount of time the nanoparticles take to 

reach steady state decreases. The densification curves 

obtained from the experimental data are calibrated to 

match sintering simulation results and it is seen that 

the simulation trend is in good agreement with the 

experimental data. These comparisons between the 

simulation and experiments gave a calibration factor 

mapping the simulation timestep to sintering time in 

minutes. The time calibration factor derived was then 

used to map the diffusion constants from simulation 

units to physical units and the resulting surface 

diffusion constant showed good agreement with 

experimental data. 

 For full reliability in this model the uncertainty in 

the sintering process caused by variations of the sizes 

and locations of nanoparticles in the bed must be 

quantified. As shown in the results derived from 

changing the position of the analysis box, there is a 

significant amount of uncertainty that comes with the 

configuration of the particles in the bed. To completely 

quantify this uncertainty, different simulation beds 

have to be tested to determine the changes in 

calibration constants and rate of densification with 

changing the initial configuration of the bed. 

In conclusion, the low percentage error between the 

simulation and the experiments done on the copper 

nanoparticles give qualitative evidence that this model 

is indeed valid for calculating the rate of densification 

in nanoparticle sintering. 
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