2.996 – Nanoscale Science and Engineering

Course Objectives:

This course focuses on how device physics change as materials approach the nanoscale and quantum effects become significant. Specifically, this class covers nanoscale phenomenon in the areas of (1) Thermodynamics and Heat Transfer, (2) Fluid Mechanics, (3) Electronics, and (4) Solid Mechanics. Within each of these topic areas, this class will discuss how nanoscale effects can be used to make or improve devices beyond what is possible at the micro and macro scales. Classical and quantum mechanical calculations will be used to model and design nanoscale devices in each of the four topic areas. Homework assignments will focus on the discussion and analysis of current state-of-the-art literature in each of the four topic areas.

Grading Policy:

The course grade will be based on:

♦ Homework (50%)♦ Class Project (50%)

Useful Textbooks:

Quantum mechanics for Scientists and Engineers by David Miller Introductory Applied Statistical Mechanics by Peter Hagelstein Introduction to Quantum Mechanics by David Griffiths Quantum Transport: Atom to Transistor by Supriyo Datta Nano/microscale Heat Transport by Zhuomin Zhang Nanoscale Energy Transport: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons by Gang Chen Nanofluidics by Patrick Abgrall Introduction to Solid State Physics by Charles Kittel Physics of Semiconductor Devices by M. Sze Foundations of Nanomechanics by Andrew Cleland Nanomaterials – Mechanics and Mechanisms by K.T. Ramesh

Class Project:

The class project consists of a research proposal that should: i) Summarize the state of knowledge of the topic, ii) Identify critical unresolved science and/or technology issues, and iii) Propose specific new research, for a 3 year period, to resolve these critical issues. The proposal text should be organized as follows:

- i) Cover Page
- ii) Executive Summary
- iii) Introduction and Background
- iv) Critical Unresolved Issues
- v) Proposed Research
- vi) References

Cass Schedule

Date	Week	Торіс	Homework
2/3	1	Introduction: Quantum Mechanics and Schrödinger Equation	
		Schrödinger Equation	
		Quantum Wells	
		Harmonic Oscillators	
		Reciprocal Lattice Space	
		Thermal: Statistical Thermodynamics and Quantum Theory	
2/10	2	Phonon Density of States	
		Maxwell-Boltzmann Statistics	HW1: Review of
		Bose-Einstein Statistics	Quantum Mechanics
		• Fermi-Dirac Statistics	
		Ideal Molecular Gasses	
2/17	3	Thermal: Thermal Properties of Nanoscale Materials	
		• Debye Model	
		Einstein Model	
		Quantum Size Effect on Heat Capacity	
	4	Thermal: Phonon Transport	
		• Wiedmann-Franz Law	
2/24		Classical Size Effects on Thermal Conductivity	
		Quantum Conductance	
		Phonon Scattering	
	5	Fluids: Mass Transport at the Nanoscale	
3/3		Continuum Assumptions	HW2: Nanoscale
		• Kinetic Theory	Thermodynamics and Heat Transfer
		Knudsen and Hindered Diffusion	and Heat Transfer
	6	Fluids: Nanopore and Nanochannel Transport	
3/10		• Electrokinetics	
		Capillary Flow	
3/17	7	Electronics: Solid State Physics Review	
		Band Structure	
		Electronic Density of States	
		Bravais Lattices	
		Bloch's Therom	
3/24	8	Spring Break	
	9	Electronics: Electron Transport in Quantum Dots and Wires	
		Quantum Capacitance	
		Electrostatic Capacitance	HW3: Nanofluidics
3/31		Ballistic Transport	
		Ohm's law	
		Drude Model	
4/7	10	Electronics: Electronic Structure of Materials	
		The Hydrogen Atom	
		Tight Binding Approximation	
		 First Brillouin Zone 	

4/14	11	Electronics: Single Molecule Electronic Devices	
		• Molecular FETs	
		Ballistic Quantum Dot and Quantum Wire FETs	
		 Comparison to Conventional MOSFETs 	
4/21	12	Mechanics: Stress and Strain and the Nanoscale	
		 Linear atomic Chains and Lattices 	HW4:
		 Interatomic Potentials and Force Fields 	Nanoelectronics
		Molecular Mechanics	
	13	Mechanics: Strength and Failure of Nanomaterials	
		Hall-Petch Model	
4/28		 Discrete vs. Bulk Nanomaterials 	
4/20		Fracture in Nanomaterials	
		Plastic Deformation	
		Hardness	
	14	Mechanics: NEMS Fabrication – Top Down and Bottom Up	
		Nanolithography	
5/5		Nucleation	
		Field-Directed and Template Self Assembly	
		Synthesis of Nanowires and Nanotubes	
	15	Mechanics: NEMS Applications	
5/12		Resonators	HW5:
		• Sensors	Nanomechanics and
		Actuators	Nanofacrication
		• Energy	