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A large variation in part size across the projection area of the microscale selective laser sintering process
is caused by non-uniform intensity projected onto the substrate by the digital micromirror device (DMD).
A corrective gray scale mask with varying intensities was mapped according to a sintered array of parts.
The variance in part size across the area was reduced by as much as 45% by using this technique. This

approach can be extended to in real-time process control to create a more uniform distribution of heat
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and in turn better near net shape parts across the projection area.
© 2022 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.

1. Introduction

Conventional microfabrication approaches typically rely on
expensive physical masks for fabrication of different layers on a
substrate. However, digital masks have become more accessible
as 'maskless’ and inexpensive alternatives to conventional lithog-
raphy[1]. A digital micromirror device (DMD) is a micro-
optoelectromechanical system (MOEMS) which physically allows
for spatiotemporal light modulation by generating digital masks.
Typically, DMDs have been used in display projection media[2],
but over the years it has gained significant traction for use in mask-
less lithography tools[3-5]. Since the DMD can be used to project
various patterns of light, it has found additional applications in
laser ablation[6], biomedical imaging|[7] and laser microfabrica-
tion[8-10].

Microscale selective laser sintering (u-SLS) is a microscale addi-
tive manufacturing (AM) technique that can fabricate true three-
dimensional metal structures with a feature-size resolution of 5
pum[11]. This process has primary applications in the microelec-
tronics packaging industry due to its desirable throughput over
large areas and ability to create pillar-like structures with high
aspect ratios in a layer by layer manner. In the u-SLS process, a
coating mechanism deposits a layer of metal nanoparticle onto
the substrate[12]. A DMD with focusing optics projects a laser in
a desired pattern onto the coated substrate. The region exposed
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by the laser is heated up and the part is formed through the pro-
cess of solid state diffusion. The coating and sintering processes
are repeated to fabricate a structure with desired features. Further
details about the u-SLS tool can be found in previous works by the
authors[11].

This work presents an intensity modulation approach where the
pattern that is projected through the DMD can be corrected to
account for the non-uniformities of the sintered layer. The novelty
of the process is in implemented the pattern correction and intensity
modulation using the feedback from the sintered layer, which allows
for a better control of the near-net shape of microscale parts.

2. Motivation behind this work

A digital micro-mirror device uses several MOEMS mirrors
which express 0 and 1 states that turn individual mirrors 'off’
and ’on’ respectively. When it is 'on’ the light is directed towards
the corresponding pixel for projection and when it is 'off’ the light
is directed towards a collector connected to a heat sink. The DMD
enables the u-SLS process to achieve high throughput patterning
by simultaneously exposing multiple features as opposed to raster
scanning across an area. In addition to providing binary intensity,
the DMD can also achieve gray-scale intensities (values between
0 and 1) through pulse width modulation[13]. In the u-SLS process
this capability can be utilized to actively or passively control the
thermal profile to better produce near net shape parts across the
sintering area.

However, inherent non-uniformities of the DMD intensity over
the entire projection area can lead to insufficient sintering of
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certain regions of the substrate. These non-uniformities are a result
of fabrication inaccuracies, micromirror damage, thermal aberra-
tions, and optomechanical misalignments, and vignetting. DMD
intensity non-uniformities lead to the following issues in the yu-
SLS process - (1) Inability to fabricate 2.5/3D features with uniform
cross section, (2) Insufficient sintering leading to poor adhesion to
the substrate, and (3) Difficulty in fabricating high aspect ratio
microscale features due to inaccurate layer stacking. These issues
collectively degrade the near-net shape of the microscale structure
that can be fabricated with the p-SLS process which is undesirable.
Some improvement can be expected by using an optical homoge-
nizer in beam path as shown by Sun et al. [9] for vat photopolymer-
ization processes, but that leads to additional optical power losses
as discussed in optical design of the u-SLS process[14].

The challenges due to non-uniform intensity profile of the DMD
have been reported in previous maskless lithography approaches
[3,15]. Rajan et al.[16] and Yoon et al.[17] addressed similar chal-
lenges in the maskless fabrication approaches by capturing the
intensity output of the projection feature and correcting for the
illumination profile in the fabrication step. However, these
approaches are system specific and require ex-situ calibration. Fur-
thermore, the variation in the near-net shape of an AM feature can
also be caused by thermal aberrations within the DMD, light-
matter interaction and imprecise optics. Therefore, in this study,
we present a closed-loop method to fabricate near-net shape parts
across the exposure area of a DMD used for the p-SLS process by
implementing intensity correction based on the actual sintered
features.

3. Materials and methods

The digital micromirror device used in the u-SLS process is a
DLP-6500 chipset (Texas Instruments) with beam-shaping and illu-
mination optics [11]. Binary and grayscale images can be uploaded
to the system via the GUI, and projected on the substrate with up
to a maximum bit depth of 8. Based on the bit-depth, grayscale
images are effectively converted into multiple binary images with
varying switching frequencies of individual pixels. For this study,
Ag nanoparticle ink (Novacentrix) was coated on a glass substrate
and was positioned under the DMD. A dot array (Fig. 1a) was
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Fig. 1. (a) Original binary mask with 40 um circles and 80 um pitch (b) [Scale bar
=160 um] Optical microscope image of the features as obtained by projecting the
dot array mask on a nanoparticle ink bed without any intensity modulation for laser
parameters V =17 V,1 =20 A, PRR =100 Hz, Duty Cycle = 10%.
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projected using the DMD on the Ag NP ink bed under the following
lasing conditions - Voltage (V) = 17-20 V (floating), Current
(I) = 20-35 A, Bursts (B) = 150, Duty cycle (D.C.)= 10%, pulse repe-
tition rate (PRR) = 100 Hz. This corresponds to average irradiances
ranging from of 60-100 W/cm?. After the desired spots were sin-
tered (Fig. 1b), the NP ink was allowed to dry at 100 °C on a hot
plate. Next, the samples were positioned on a fixture and imaged
under a Motic PSM-1000 optical microscope with a 20x objective
lens. As seen in Fig. 1b, there is a large non-uniformity between
the diameters of the dots in the center and the dots towards the
edges. Furthermore, the dots at the last edge rows and columns
are virtually non-existent. This can be attributed to the issues iden-
tified in the previous section. The dots at the edge were not fully
sintered which led to poor adhesion to the substrate and eventual
lift-off while removing the excess ink with a solvent. This also pre-
sents significant challenges while stacking multiple layers in this
layer-by-layer manufacturing process.

To compensate for this difference in diameters, the non-
uniformities in the intensity profile of the incident light must be
adjusted. As discussed previously, the DMD generates the desired
pattern by independent switching the micromirrors into 'on/off
stages. With the very basic configuration, the intensities from the
micromirrors are produced by pulse width modulating them over
a specified refresh time. The features obtained in Fig. 1b corre-
spond to a 1-bit depth image since it is a binary image. The relative
brightness of the pixel can be written in up to 8 bits (allows for 256
unique combinations of ones and zeros), which correspond to vary-
ing on/off durations. This effectively encodes the different intensi-
ties of gray scale.

A straightforward way of mapping the intensity profile of the
DMD output is using a beam profiler. However, the short burst
durations and the minimum laser threshold fluence led to less
reproducible data using this approach.Therefore, an alternative
approach was implemented where the unmodulated image shown
in Fig. 2a was used as the 'ground truth’. Then, the original dot
array was used as a mask to obtain a fused image and nominally
evaluate the alignment of the two images (as shown in Fig. 2b).
Next, the sintered image was converted into a binary image and
broken down into a 4 x 8 array as shown in Fig. 2c. The resulting
images are then processed to find the mean of the areas covered
by the circles obtained by applying a binary mask. The regions with
smaller circles had less number of "dark’ pixels and higher number
of 'bright’ pixels.

The processing step assigned a mean pixel intensity to each
sub-images. The resulting pixel matrix was normalized across a
range of grayscale values from O to 1. The original binary mask
was multiplied with the inverted pixel matrix to obtain a grayscale
mask which has pixels with varying intensity. Fig. 2d shows the
original image which was used to back calculate the expected
intensity variation, and Fig. 2e shows the dot array with the inten-
sity mask applied. The mask is the inverse of the resultant intensity
map to account for darker regions at locations where the circle
diameter is larger and brighter regions where the circle diameter
is smaller. A limitation of this approach is that the overall resolu-
tion of the intensity map would depend on the number of the orig-
inal sub-images, and hence, a potentially higher accuracy intensity
mask can be obtained by sub dividing the original image into smal-
ler sections.

4. Results and discussions

The new mask as shown in Fig. 2e was projected on to the
coated substrate. Two test artifacts fabricated with the modulated
intensity profiles are shown in Fig. 3b and c. A qualitative compar-
ison between the sintered parts fabricated without any intensity
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Fig. 2. [Scale bar =80 um] (a) Resized Optical microscope image of the dot array shown in Fig. 1b (b) Fused image of the unmodulated dot array with the original binary
mask. (c) Figure showing the 8 x 4 sub-images sintered image was processed and disaggregated. (d) Original binary mask (e) Modulated grayscale mask for projection

obtained by processing the unmodulated images.

modulation (Fig. 3a), and with intensity modulation (Fig. 3b and c)
shows the difference in the near net shape of the patterned layer.
All the samples were processed using the same approach discussed
previously to obtain the intensity map and the modulated grays-
cale image. A qualitative comparison of the images shown in Fig. 3-
a-c shows that the dot array obtained using the modulated mask
has a more uniform distribution. Post processing these samples
also showed that the likelihood of the circles around the edges
being washed off during the excess ink removal step was lower
which can be attributed to better sintering of the features at those
locations. This also ensures that the features sintered in the subse-
quent layers will have a higher chance of adhering to the previous
layers due to a uniform localized heat spread on the nanoparticle
bed.

The images shown in Fig. 3a-b were divided into sub-figures
using the same approach shown in Fig. 2c and a distribution of
the intensity map was plotted as shown in Fig. 4. In this plot, the
unmodulated sample (Fig. 3a) has a heavier bottom tail compared
to the two modulated samples (Fig. 3b and c). The variance in the
dot array distribution are 7.2 x 10~* and 5.4 x 10~ for modulated
test 1 and test 2 respectively, compared to the 9.8 x 10~* value for
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the unmodulated images. The heavier tail for unmodulated sample
shows that the non-uniformities in the laser material interactions
produce circles with different diameters across the array. The
reduction in variance by 45% shows that the grayscale modulation
of light improves the uniformity in the diameters of the circles.
Therefore, this approach assists in obtaining a better near-net
shaped part by distributing the heat across the nanoparticle ink
bed more uniformly.

A significant advantage of this approach is that it captures the
non-uniformities in the processing step as well, which can come
from variations in the coating thickness, optomechanical misalign-
ments and thermal aberrations due to continued operation. How-
ever, using the sintered image as a model input parameter and
applying the processing steps discussed above captures these
non-uniformities as well as the laser material interaction. The pro-
posed passive intensity modulation approach allows the in situ cal-
ibration of the layer information during of the fabrication of
microscale 3D printed parts. Compared to the use of additional
metrology system which measures part quality and layer fidelity,
the proposed methodology is faster and incorporates the imperfec-
tions of the laser-material interaction. This approach can be imple-
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Fig. 3. [Scale bar =80 um] (a) Original dot array without any modulation (b) Dot array with modulation - Test artiFact 1 (c) Dot array with modulation - Test artiFact 2. The

two test artifacts are repeated tests using the same modulation approach.
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Fig. 4. Normal probability plot of the unmodulated and modulated dot arrays.
Modulated Test 1 and Test 2 are two repeated tests with the same modulation
parameters.

mented in a passive manner by developing a process control model
for modulating the n" layer based on the information from the

(n—1)™ or in an active manner by implementing the approach in
real-time.

5. Conclusions

This study established a technique to address the variance in
feature sizes across the projection area onto a substrate for the
microscale selective laser sintering process. The key contributions
of this work are as follow -

- An intensity modulation technique was developed which used
a compensating gray-scale mask from the distribution of feature
sizes obtained using a binary mask. Images of an array of sintered
parts were processed to determine mean pixel intensities in disag-
gregated regions across the projection area, and a corresponding
gray-scale intensity value was assigned to each region.
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- This technique treats the sintering process as a black box with
intensity distribution as the input and part size uniformity as the
output. As a result, the negative contribution to near net shape
parts from variation in deposited ink thickness, thermal profile,
defects in the micro mirror array in DMD, and optomechanical
misalignment are targeted using this black box.

- The approach used in this study focuses on a correcting a sin-
gle layer of parts created by a binary mask, but it can be extended
to multiple layers by generating gray-scale masks in a feedback
loop according to the observed part size distribution in the previ-
ous sintered layer.
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